<table>
<thead>
<tr>
<th>TSC Category</th>
<th>Energy Management Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSC</td>
<td>Network Simulation and Analysis</td>
</tr>
<tr>
<td>TSC Description</td>
<td>Analyse the natural gas network to coordinate bookings of available capacities, maintain optimal performance settings and drive enhancements to the network</td>
</tr>
<tr>
<td>TSC Proficiency Description</td>
<td>Level 1</td>
</tr>
<tr>
<td></td>
<td>EPW-EMO-2013-1.1</td>
</tr>
</tbody>
</table>
| Knowledge | - Gas network processes
| | - Types and components of gas networks
| | - Principles of gas network monitoring systems
| | - Principles of gas flow dynamics
| | - Principles of gas network analysis
| | - Procedures for monitoring gas networks
| | - Modelling and simulation tools and methods for gas networks
| | - Principles of gas flow dynamics
| | - Data elements of network analysis
| | - Principles of gas flow dynamics
| | - Principles of gas network analysis
| | - Procedures for monitoring gas networks
| | - Principles of gas flow load characteristics analysis
| | - Formulae relating to calculations for gas flow dynamics
| | - Network optimisation principles
| | - Gas capacities analysis techniques
| | - Gas network system design settings and principles
| | - International best practice and emerging trends
| | - Applicable regulations codes and standards
| Abilities | - Prepare pressure gauges and monitoring equipment for monitoring and analyses
| | - Perform gas system network monitoring
| | - Determine flow dynamics of gas networks
| | - Record gas network information
| | - Maintain historical information in Supervisory Control and Data Acquisition (SCADA) monitoring systems
| | - Analyse data from Supervisory Control and Data Acquisition (SCADA) systems and determine gas demand and capacity
| | - Perform monitoring of gas system networks
| | - Perform gas network system analyses and simulations
| | - Coordinate bookings of gas network available capacities by end users
| | - Review gas network system analyses and simulations on available capacities
| | - Resolve complex conflicts in bookings of available gas network capacities and availability of shippers
| | - Adjust pressure network settings for gas networks to achieve optimal performance
| | - Integrate systems and streamline work processes to drive enhancement of network health
| | - Establish key performance indicators to evaluate robustness of gas network systems
| | - Review gas network systems to identify potential synergy of Supervisory Control and Data Acquisition (SCADA) monitoring and
Data Acquisition (SCADA) systems
- Assist in gas network analysis on shipper nominations
- and availability of shippers
- Define gas flow load characteristics according to gas supply system design
- Interpret and explain results including anomalies in outputs
- Assess risks based on simulation outputs

Range of Application
Range of application includes, but is not limited to:
- Supervisory Control and Data Acquisition (SCADA)
- Gas Transportation IT System Solution (GTSS)
- Online pipeline simulation
- Global fleet management systems
- Gas and electricity mapping systems