TSC Category
Process Monitoring Management

TSC
Autonomous Systems Technology Application

TSC Description
Integrate autonomous systems and technologies in operational workflows, including processes, maintenance, logistics and plant surveillance, to enhance productivity and precision, and reduce reliance on manual tasks.

<table>
<thead>
<tr>
<th>TSC Proficiency Description</th>
<th>Level 1</th>
<th>Level 2</th>
<th>Level 3</th>
<th>Level 4</th>
<th>Level 5</th>
<th>Level 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPW-TEM-2022-1.1</td>
<td>EPW-TEM-3022-1.1</td>
<td>EPW-TEM-4022-1.1</td>
<td>EPW-TEM-5022-1.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apply procedural knowledge of autonomous systems and technologies to execute operational tasks</td>
<td>Diagnose faults in the use of autonomous technologies and systems</td>
<td>Evaluate the suitability of applying autonomous technologies and systems in plant operation, maintenance, logistics and surveillance</td>
<td>Drive decisions on selection and adoption of autonomous technologies and systems and formulate new processes to enhance operational efficiency and reliability</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Knowledge
- Types of autonomous technologies and their process control systems utilised in plant operation, maintenance, logistics and surveillance tasks
- Methods of operating autonomous systems for plant operation, maintenance, logistics and surveillance tasks
- Electrical safety rules related to the use of autonomous technologies
- Types of sensors and actuators used in autonomous technologies
- Procedures for installing actuators and sensors
- Principles of autonomous technologies
- Procedures for setting up and inspecting autonomous systems and technologies
- Approaches to oversee operation, maintenance, logistics and surveillance tasks that use autonomous systems and technologies
- Principles of plant and system operations, maintenance, logistics and surveillance
- Types and applications of control loop components and controllers
- Electrical safety rules related to the use of autonomous technologies
- Range of application for autonomous technologies
- Methods of evaluating resources and skills to carry out operation, maintenance, logistics and surveillance tasks using autonomous technologies
- Principles of electro-pneumatics
- Types of logic control programmes
- Concepts pertaining to performance specifications and analyses of autonomous systems
- Best practices in autonomous technologies
- Electrical safety rules related to the use of autonomous technologies
- Organisational processes
- Organisational quality guidelines
- Methods of developing detailed operating procedures for autonomous technologies
- Methods to influence the adoption of new technologies
- Impact of autonomous technologies on plant operation, maintenance, logistics and surveillance processes
- Principles of change management
- Prediction and decision algorithms
- Principles of machine learning or artificial intelligence
- Principles of systems interfacing

Abilities
- Operate autonomous technologies by following manufacturers’ instructions and operating procedures
- Oversee the use of autonomous technologies
- Diagnose faults in the use of autonomous technologies
- Evaluate various autonomous technologies and systems to compare strengths and limitations
- Determine range of application, resources, skill requirements and feasibility for
<table>
<thead>
<tr>
<th>Follow safety procedures when operating autonomous technologies</th>
<th>Identify and report any issues with autonomous technologies</th>
<th>Install sensors and actuators in specified locations for the application of autonomous technologies, where applicable</th>
<th>Technologies for operation, maintenance, logistics and surveillance, and suggest solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apply corrective actions for automatic and manual shut-down of autonomous systems during critical and emergency situations</td>
<td>Review and incorporate feedback on the operations of autonomous technologies into updated operation, maintenance, logistics and surveillance procedures</td>
<td>of autonomous technologies</td>
<td>Evaluate the feasibility of autonomous systems for plant operation, maintenance, logistics and surveillance processes</td>
</tr>
<tr>
<td>Apply optimisation techniques to improve automated processes efficiency and reliability</td>
<td>Assess improvements to operation, maintenance, logistics and surveillance processes</td>
<td>autonomous technologies</td>
<td>Develop technical operating procedures for autonomous systems</td>
</tr>
<tr>
<td>Drive autonomous technologies and systems into day-to-day operations</td>
<td>Ensure procedures and operations are implemented according to plans and requirements</td>
<td>Evaluate the feasibility of autonomous systems for plant operation, maintenance, logistics and surveillance using autonomous technologies</td>
<td>Formulate processes and procedures for plant operation, maintenance, logistics and surveillance using autonomous technologies</td>
</tr>
<tr>
<td>Ensure procedures and operations are implemented according to plans and requirements</td>
<td>Refine parameters of autonomous processes to improve operational efficiency</td>
<td>Determine post-processing procedures for plant operation, maintenance, logistics and surveillance using autonomous technologies</td>
<td>Determine technological requirements to enable interfacing of the different systems</td>
</tr>
<tr>
<td>Determine technological requirements to enable interfacing of the different systems</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>